PROJETANDO SISTEMAS DE MACHINE LEARNING
De: R$ 0,00Por: R$ 86,90ou X de
Padrão
ANO | 2024 |
---|---|
Subtítulo | PROCESSO INTERATIVO PARA APLICAÇÕES PRONTAS PARA PRODUÇÃO |
Autor | CHIP HUYEN |
EDITORA | ALTA BOOKS |
Idioma | PORTUGUÊS, PORTUGUÊS |
EDIÇÃO | 1ª EDIÇÃO - 2024 |
NÚMERO DE PÁGINAS | 384, 384 |
Colaboradores | (Tradutor) CIBELLE RAVAGLIA |
Selo | ALTA BOOKS |
Série | O’REILLY |
SINOPSE | Projetando Sistemas de Machine Learning Os sistemas de Machine Learning (ML) são complexos e únicos. Complexos porque são compostos de muitos componentes diferentes e envolvem muitas partes interessadas diferentes. Únicos porque são dependentes de dados, e esses dados variam muito de um caso de uso para outro. Neste livro, você aprenderá uma abordagem holística para projetar sistemas de ML que sejam confiáveis, escaláveis, de fácil manutenção e adaptáveis a ambientes em constante mudança e requisitos de negócios. A autora Chip Huyen, cofundadora da Claypot AI, considera como cada decisão de design — como processar e criar dados de treinamento, quais recursos usar, com que frequência treinar modelos e o que monitorar — pode ajudar seu sistema como um todo a atingir os objetivos. A estrutura iterativa neste livro usa estudos de caso reais respaldados por vastas referências. Este livro o ajudará a lidar com os seguintes cenários: Engenharia de dados e escolha das métricas adequadas para resolver problemas de negócios Automatizar o processo para desenvolver, avaliar, fazer deploy e atualizar continuamente modelos Desenvolver um sistema de monitoramento para detectar e resolver depressa os problemas que seus modelos podem encontrar em produção Arquitetar uma plataforma de ML que atende a todos os casos de uso Desenvolvimento de sistemas responsáveis de ML “Este é simplesmente o melhor livro para se ler sobre como criar, implementar e escalar modelos de machine learning em uma empresa para obter o máximo impacto.”—Josh Wills Engenheiro de Software na WeaveGrid e ex-diretor de Data Engineering no Slack “Em um mapa próspero do ecossistema, ainda que caótico, a visão de princípios apresentados sobre ML de ponta a ponta serve como uma leitura obrigatória para profissionais dentro e fora da Big Tech, sobretudo para aqueles que trabalham em “escala razoável.”—Jacopo Tagliabue Diretor de IA da Coveo |
SOBRE O LIVRO
FICHA TÉCNICA
Padrão
ANO | 2024 |
---|---|
Subtítulo | PROCESSO INTERATIVO PARA APLICAÇÕES PRONTAS PARA PRODUÇÃO |
Autor | CHIP HUYEN |
EDITORA | ALTA BOOKS |
Idioma | PORTUGUÊS, PORTUGUÊS |
EDIÇÃO | 1ª EDIÇÃO - 2024 |
NÚMERO DE PÁGINAS | 384, 384 |
Colaboradores | (Tradutor) CIBELLE RAVAGLIA |
Selo | ALTA BOOKS |
Série | O’REILLY |
SINOPSE | Projetando Sistemas de Machine Learning Os sistemas de Machine Learning (ML) são complexos e únicos. Complexos porque são compostos de muitos componentes diferentes e envolvem muitas partes interessadas diferentes. Únicos porque são dependentes de dados, e esses dados variam muito de um caso de uso para outro. Neste livro, você aprenderá uma abordagem holística para projetar sistemas de ML que sejam confiáveis, escaláveis, de fácil manutenção e adaptáveis a ambientes em constante mudança e requisitos de negócios. A autora Chip Huyen, cofundadora da Claypot AI, considera como cada decisão de design — como processar e criar dados de treinamento, quais recursos usar, com que frequência treinar modelos e o que monitorar — pode ajudar seu sistema como um todo a atingir os objetivos. A estrutura iterativa neste livro usa estudos de caso reais respaldados por vastas referências. Este livro o ajudará a lidar com os seguintes cenários: Engenharia de dados e escolha das métricas adequadas para resolver problemas de negócios Automatizar o processo para desenvolver, avaliar, fazer deploy e atualizar continuamente modelos Desenvolver um sistema de monitoramento para detectar e resolver depressa os problemas que seus modelos podem encontrar em produção Arquitetar uma plataforma de ML que atende a todos os casos de uso Desenvolvimento de sistemas responsáveis de ML “Este é simplesmente o melhor livro para se ler sobre como criar, implementar e escalar modelos de machine learning em uma empresa para obter o máximo impacto.”—Josh Wills Engenheiro de Software na WeaveGrid e ex-diretor de Data Engineering no Slack “Em um mapa próspero do ecossistema, ainda que caótico, a visão de princípios apresentados sobre ML de ponta a ponta serve como uma leitura obrigatória para profissionais dentro e fora da Big Tech, sobretudo para aqueles que trabalham em “escala razoável.”—Jacopo Tagliabue Diretor de IA da Coveo |